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Abstract—A method is developed for the analysis of the nature of the singularities at the free edge
of an elliptical hole in a composite laminate. The method is general enough to be applicable to any
type of laminate with or without a hole. Boundary layer theory, as originated in aerodynamics is
used to simplify the equations applied within the boundary layer region, while compatibility is
achicved at the other border of that region to comply with anisotropic plate theory. In the present
case the method is applied to investigate the effect of the free edge of a hole on stresses at the ply
interface within the boundary layer. The immediate application within that region is the solution
for the Energy Release Rate which is essential to the evaluation of critical conditions such as
delamination initiation. Attention is focused on the influence of adjacent ply orientations on the
order of singularity at the interface.

NOTATION

cocflicients matrix

constants ol integration

coetlicients of polynomials in the particulur solution
distance from hole to laminate edge

cross sectional area at cut perpendicular to load direction
free edge surface

interface plane

results vector of set of linear equations

out-of-plane coordinate of upper surface of laminate
coetficients vector, final description

coeflicients vector of homogencous solution
out-of-plane coordinate of lower surface of luminate
vector of unknowns in the complete formulation
domain of integration

elliptical hole axes in x, and x, directions, respectively
coctlicients vector of the homogeneous solution
infinitesimal length

unidirectional material propertics

distance from hole to laminate edge

Lekhnitskii's stress potentials

stress function used for the homogencous solution
stress cigenfunctions of the homogencous solution
functions of the compliance and coefT. of part. solution
displacements cigenfunctions of the homogencous solution
magnitude related to the homogencous solution
near-ficld parameters

magnitude relited to the characteristic equation
differential operator

differential operator

remote loading-moment w.r.t. the indices

magnitude related to the mth ply

number of unknowns = number of columns in the coetficients matrix

function related to the homogeneous solution
magnitude related to the particular solution
function related to the homogencous solution
uniaxial remote load in the x, dircction

order of matrix—number of rows

residual when utilizing a weighting technique

polar coordinate starts at the origin of the Cartesian system

tensorial compliance matrix
reduced tensorial compliance matrix
the method of singular value decompaosition
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(B transpose

t laminate thickness

[ function related to the homogeneous solution

U matrix of orthonormalized eigenvectors

L function related to the process of governing equations
u, displacements vector

Uy rigid body displacements

b matrix of orthonormalized eigenvectors

v vector related to the singular value decomposition method
w vector related to the singular value decomposition method
X, directions

Z, argument of Lekhnitskit's stress functions

x scanning azimuth at the hole

(), Greek notation: -6

J, series of etgenvalues

o series of eigenvalues at interface m

£, strain tensor

A coeflicients related to the characteristic equation

v Lekhnitskii's stress potential

¢ trial function related to the weighting technique

I roots of the characteristic equation

v, Poisson’s ratio

o™ tiber direction at mth ply

o polar coordinate starts from the examined interface

T diagonal matrix of eigenvalues, related to the S.V.D.
a, stresses in Greek notation

T, stress tensor

T, el stress tensor computed for the anisotropic plate with hole
1) angle measured from the interface to 8,

e, rigid body rotations

() conjugate of complex number

). first and second differentiation

¢ partial ditferentation

t transpose of the conjugates

det] | determinant

L. INTRODUCTION

It is known that a wide range of properties and performance can be achieved through
the utilization of composite laminates in structures, since it is possible to adjust the ply
oricntations, stacking scquence, and thickness. At the edge of the laminate, however, high
vilues of stresses are often obtained due to ply deformation mismatching, which may lead
to delamination. That delumination can be controlled by artificial means such as stitching,
tufting, or constraining the edge by caps. A more natural procedure is available through
optimization of fiber orientation, weaving, and layer sequencing in the vicinity of the edge
in order to reduce edge effects, or even by reversing the interlaminar situation by changing
tension conditions to compression.

The behavior of the stress field at the cdges of composite laminates due to deformation
mismatching has been the subject of extensive investigation during the last two decades.
Pipes and Pagano (1970) used a finite difference method to solve the relevant elasticity
equations, whereas Wang and Crossman (1977) employed a finite element approach to
investigate this phenomenon. Recently, an approximate method was presented by
Kassapoglou and Lagace (1987) using the force balunce method in conjunction with
minimization of energy. Due to the approximate nature of the approaches involved in the
previous studices, it was not possible to determine the order of singularity of the stresses at the
free edges. Wang and Choi (1982a,b) derived an analytical solution, following a Lekhnitskii
(1963) formulation, and obtained the exact order of singularity at the edge of the laminate.
Their derivation involves a special form of Lekhnistkii's stress potentials which explicitly
includes a parameter identified as the order of the singularity. However, their solution for
the stresses is approximate, and due to mathematical difficulties the method was only
applied to the analysis of special types of laminates at the straight free edge, as was done
by the previously mentioned rescarchers.

Zwiers ¢t al. (1982) have used the method of Stroh (1962) to consider the problem,
and find a logarithmic singularity in addition to the r° singularity for general laminate
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Fig. L. Geometry and coordinates of composite laminate with elliptical hole.

interfaces in some cases. However, the nature of In () singularity does not depend on the
ply oricntations on cither side of the interface. Hence, it is not of interest for the present
analysis which sceks to determine the manner in which the relative ply orientations influence
the nature of the singularity as a busis for predicting the interface which is most likely to
delaminate.

In the present paper the approach of Wang and Chot (1982a.b) is followed for the
analysis of a laminated plate with an elliptical hole. The proposed method is general in the
sense that it can be applied to any type of composite faminate with an clliptical hole. For
the special case when the effect of the hole is disregarded, the general method is applicable
to the special types of laminates treated by Wang and Choi (1982a.b). The analysis leads
to an over-determined system of equations which shows ill-conditioned behavior. This
mathematical obstacle is overcome by adopting the Singular Value Decomposition Method
(Stewart, 1973) to determine the real rank of the matrix when it is less than full rank.

The governing equations consist of differential equations and therefore are decomposed
into homogeneous and particular parts. The derivation of the homogencous solution is
identical to the method of Wang and Choi (1982a,b). The particular solution satisfies the
governing equations, free edge conditions, the interfacial continuity relations, and the upper
and lower traction-free surface requirements, and represents the influence of the hole. The
effect of an elliptical hole is incorporuated by adopting Lekhnaitskii's solution for anisotropic
plates containing an elliptical cavity. By conversion of the composite laminate into an
anisotropic plate via classical lamination theory (Jones, 1975), the strains were evaluated
from Lekhnitskit's solution. The corresponding stresses in the different plies can thus be
determined. As the analysis is based on a set of cigenvalues and includes some numerical
integration, the accuracy of the results was assessed and demonstrated by selecting various
numbers of eigenvalues und points of integration. Results are given which exhibit the effect
of the hole's edge on the behavior of stresses within the boundary layer and, for special
cases, throughout the luminate.

2. BASIC FORMULATION

2.1. Solution methodology

Consider a composite laminate containing an elliptical cutout as shown in Fig. 1. A
system of Cartesian coordinates is introduced whose origin is located at the bore edge at
the examined interface and its orientation follows the scanning azimuth in such a wav that
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the x, axis is always radially oriented away from the center of the hole. Every lamina is
assumed to be elastic and anisotropic, obeying the generalized Hooke's law :

&; =[S} (1

in which {¢} are the strain components of the mth ply.

) . r
{EI = [e11. 622,613, 2623, 2613, 2612] .

The solution methodology follows Lekhnitskii's (1963) approach for anisotropic plates
as used by Wang and Choi (1982a.b). The problem is treated as a boundary layer problem.
It is somewhat similar to the aerodynamic problem of viscous flow around an airfoil. In
the aerodynamic problem, we consider a streaming flow past a slender body. The fluid
viscosity is taken to be relatively small and the shearing stresses developed are very small.
It is known that except for a thin layer adjacent to the solid body. the transverse velocity
gradients are negligibly small throughout the flow field. However, within that thin boundary
layer, large shearing velocities are produced resulting in large shear stresses. The importance
of this concept is that it allows us to apply the more complicated equations related to the
boundary only within that thin layer, and some appreciable simplifying assumptions can
reasonably be made. [n the acrodynamics case, these are the viscous motion equations. [n
our case, the boundary layer is a relatively thin region in the vicinity of the edge. At the
free edge the stress field is singular and thus its values arc infinitc. Within the boundary
laycr stresses change rapidly from the edge to the other side of the region where they
agree with results from classical lamination theory (Jones, 1975) and anisotropic plates
(Lekhnitski, 1963). Within the boundary layer, changes with respect to vy and x, arc
considered to be larger than changes with respect to v, Thus, within that region we may
simplify the problem and neglect variations with respect to v, while requiring compatability
with the above-mentioned solutions which take changes with respect to x, into account,
such as the solution of an anisotropic plate with a cavity (Lekhnitskit, 1963). Sceveral
assumptions should be noted.

(1) The composite laminate is of finite width.

(ii) The laminate is long enough such that end effects can be neglected.

(iti) Due to the neglect of variations with respect to v, we may assume a statc of
generalized plane deformation within the boundary layer.

The equilibrium equations, in the absence of body forces, are given by
6,; =0 i j=1273. (2)

L

Due to assumption 3, derivatives with respect to x; are omitted, reducing (2) to

g, +0::=0 (3a)
6na+0:2:=0 (3b)
G311 +03::=0 (30)
The small strain tensor is given in terms of the displacements w, by
&, = Y, +u,,). (4
Using (4) in (1) and integrating provides
= — 1A Syx = A+ U (XL ) +oa Xy —osxs g (5a)
U, = — gAZSJ_‘.Y§+A4.\‘,x3 + U:(.\‘,..‘C:) +(U;.V| — )X, +‘ll:0 (Sb)

(e + A0+ A4)S X+ Uslx X)) oy —anx; +ugy (5¢)

~
-~
-
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where u,, and w, are rigid-body translations and rotations, respectively. The stress in the
longitudinal direction, 03, is given by

Sy0,
SJ)

0'33=A|.‘|+A:X:+A3— (6)

where j = 1, 2, 4, 5, 6 using the contracted Greek notation for stresses.
The derivatives of functions U, (x,, x,), Us(x,, x,). U,(x,. x,) are expressed in the
form

Uiy =81,0,+ 8 ,(Ax, + 4,5, + 45) (72)
Usy =810+ S::(d,x, +A:X; + Ay) (7b)
Usy =840+ Ss3(A, Xy + Asxs + A3} + Ay x; (7¢)
Usz = 840,+Su(A\x, + Arxa+ A;) — Aux, (7d)
Uiz +Usy = 860,+Sei(A x, + Ay, + A4y) (7¢)

where S is the reduced form of S given by
S, =8,- il L i j=1,2.4,5,6. (8)

Following Wang and Choi (1982a,b), we adopt Lekhnitskii's stress potentials £, W
defined by

9)

Equation (9) satisfies (3) and when used in conjunction with (5) and (7) it creates a system
of governing equations that can be expressed in terms of partial differential operators which
have the form

L;F'{"LZ\P = —2A4+A|S;(4—A2835
LF+L ¥ =0 (10)
where
~ 0° ot ~ 0
Lr= S Lox3 S”@r, 0x1 S”a‘E (11a)
33 i} a) - a]
L\= —'Sua ;+(st+S4e)a (3 X, (S|4+Ssa) x2+S|5'a‘_;—g (”b)
1»1 - 4 - - 4 - 84 o 84
L,= —Szza 3 -zsze‘a'—d’a; +(28,2+ S46) axTax =25 ERr P, +Sn I (11c)

2.2. Boundury conditions
We consider three types of boundary conditions, as follows in the next sections.

2.2.1. Traction-free edge boundary condtions. Assuming that the edges of the laminate
and the hole are traction-free, it follows that
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0'”:0'[3'—'0']::0 x,=0. x3=0. x;=0. (12)

2.2.2. End conditions. We require static equilibrium with the remote loading by forming
the following integrals over the cross-sectional area B as shown in Fig. | (Lekhnitskii, 1963)

gy3dy,dx, =0 (13a)
JB J
[« BF) d.\'|d.Y: =0 (l3b)
JEJ
rr
O'JJd.\'ld.\':-_—Pj_\ (l}C)
J8J
J‘ ff}}.\':d.\]d.\'z = 1"!” (13d)
8J
~
J (T}}.\’ld.\:ld.\'z = /‘/Izz (l3e)
8 J
J J(UZ}.VI —0'|)_V3)(i.\‘| dx: = A‘l|3. (|3f)
R

For cases where the analysis is done at an azimuthal angle « different than 07, the coordinate
system is rotated such that the x, axis is tangent to the hole surface and creates an angle
with respect to the loagitudinal axis of the plate. The domain in which integration is carried
out is the cross-sectional arca B/cos ().

2.2.3. The carity boundury conditions. A special treatment is required in the vicinity of
the hole. This is achicved by conversion of the laminate plate cross section into an aniso-
tropic plate via its effective elastic constants (E,, E,, G,,. v.,) calculated by classical
lamination theory (Jones, 1975). Analysis of such a plate with cavity subjected to various
loads, ts done following Lekhnitskii (1963). The resulting strains, when multiplied by the
stiffness components of the relevant ply, provide the planar stress distribution in that ply.
These stress distributions are applicable away from the hole where the edge effects are
negligibic.

2.3, Interfucial continuity
Continuity of tractions must be satisfied at the interface between the m and m + 1 plies

o.(:"nlza(zl:n-l) f=1,2,3; x;=0: (]4)

and the displacements must be continuous :

U™ =Wt i=1,2,3

.t1=0 (15)

.
.

3. SOLUTION OF THE GOVERNING EQUATIONS

The solution consists of two parts, homogeneous and particular solutions. The homo-
geneous part can be exactly derived and provides the stress singularities at the cdges. On
the other hand, the particular solution can not be exactly obtained, and an approximate
method is applied.
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1.1. The homogeneous solution
Following Lekhnitskii (1963), the general forms of his stress potential are taken in the

form

6
F(x,,x:) = Z F(Z) (16a)
k=1l
6
Wixi.x) = Y meFi(Ze) (16b)
k=1

where Z, = x4 u,x., p are the roots of the characteristic equation as shown below, 7, are
ratios of components of the characteristic equation, and Fi(Z,) is the derivative w.r.t. the
argument Z,.

Regarding the homogeneous form of eqn (10), we consider the potentials Fand ¥ to
consist of two parts denoted by indices | and 0 designating the homogeneous and the
particular solutions. respectively. The characteristic equation of the homogeneous solution
is defined by the left-hand side (10). Eliminating one of the functions, say ¥, we obtain a
6th order equation for the remaining F,,

(LiLy—L)F, =0 (17a)
which can be decomposed into
D.DsD,D\D,DF, =0 (17b)
where
D, d 0

= e gy e
2x, H dx,

Conscquently, new sets of operators are obtained from (11):

12 = §55}l2"2§45]l+§44 (Isa)
Iy=8 1’ = (S + S5 +(S15+ Ss6) = S (18b)
ly=8 1 =28, + (25, + See)® = 25,0u+ $:s. (18¢)

The resulting characteristic equation is
L) =15(w) = 0 (192)
also

= — Ly () - Ly(ue)
. L () 13(#&)'

(19b)

It has been shown by Lekhnitskii (1963) that the y, are complex conjugates where the
real part vanishes for orthotropic materials. Solving the polynomial (19), and substituting
for the stresses and displacements (9) and (7), respectively, yields the following results
designated by (#) for the homogeneous part of the solution

]

ol = 3 WF(Z) (20a)
kowl
[}

o= Y F'(Z) (20b)
k|

A5 75:13-8
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6
o) = — 3 mF(Z) (20c)
k=1
6
o) = 3 meF"(Zs) (20d)
k=1
6
of = = wF"(Z) (20¢)
k=1
6
ulfh = Z pF(Zy) (206)
k=1
6
uP =Y @ F(Z) (20g)
k=1
6
u(;') = Z th'(Zk) (20h)
k=1
where
[’k=S~|ll‘kz+§|z—§u'lk+§|5'h/‘k—Slsllk (21a)
N S.. S.m - N
G = S+ *:_,;ilf,+525"k_526 (21b)
Hy Ky
N S S ~ -
L= Syt + ;1__4417_’5+S“'“__S“' (21c)
M e

Following the idca of Wang and Choi (1982a.b), the functions £ (Z,) are expressed in
the form

zz»:

F(Zy) = ¢ GINe+y

(22)

By choosing this particular expression, it can be readily shown (by performing second-
order derivatives) that the general form of the stresses can be represented in the form

o, = Kr''. (23)

It is obvious that, by solving for J, we obtain the exact order of the singularity as r
approaches zero. Using a different approach, Zwiers et al. (1982) have found that a complete
solution to this problem involves an additional term which represents the logarithmic
behavior of the singularity as well as dependence of a constant taken to be a material
parameter. This part of the behavior and the associated terms are of no importance to the
present study since they do not vary with changes in adjacent ply orientations for a given
laminate. For the present solution scheme, we require that (22) followed by (23) will satisfy
all boundary conditions and governing equations for the homogeneous and particular parts
of the solution. Substituting (22) into (20) provides the following :

3
ofl = Z (cxmiZi+corsii Z1) (24a)
k=1
J - o
o = Z (v Zi+ iy 23] (24b)
K=

3
==Y [amZi+c. iz (24¢)
P

Q
LE)
bt

Il



Edge effect singularities for a circular hole 1123

3

o} = ’g' leemeteZi + co st 21 (24d)
A= - 3 i siZ2 (24¢)
uf) = ké leeZE ' +censBZiH 110+ 1) (241)
uf = ki] (e qeZi P +ee s G ZE 'Y+ 1) (24g)
= z [t ZE 4 e 22 6+ 1). (24)

It should be noted that the present contribution (23) from the homogeneous solution
involves the parameter . This parameter depends on the specific geometry in the close
vicinity of the edge as well as on the elastic constants of the two adjacent plies. Thus, (23)
ts valid at the hole as well as at the plate edge, and refers to the relevant ply pair in which
& was calculated.

Substituting (22) into the free edge boundary conditions (12), yields three equations
for each of the two adjacent plics, resulting in a total of six equations. Similarly, substitution
into the interfacial conditions (15) contributes an additional six equations, There are six
unknown coeflicients ¢, & = 1-6, for each layer and the additional unknown power 8. This
system of 12 algebraic cquations can be presented in a matrix form,

- [4]{C} = (25)
where [A] is a 12 x 12 matrix whose elements involve J as a power. In addition,
{C} — [{.im)‘ {.im ¥ l)}'!' k = l, 2‘ 3‘ 4’ 5’ 6

This system establishes a nonlincar eigenvalue problem for which {C} are the eigenvectors
and d, are the corresponding eigenvalues determined from the requirement that [4] must
vanish for a non-trivial solution ;

det[4] = 0. (26)

The solution of eqn (26) is performed by a deflation technique as presented by Muller
{1956). Since (26) is a transcendental equation, an infinite set of solutions for J is obtained.
The algebraically smallest eigenvalue is a real number in [—1,0] and is the order of the
singularity as explained by Wang and Choti (1982a,b). For the case of an angle-ply laminate,
the higher eigenvalues are either integers or pairs of conjugate complex numbers. The
properly truncated set of eigenvalues is used in the particular solution to ensure convergence.
Once (25) is solved, the stresses and displacements are obtained from (24) using the
expressions

o = T dP [ (x1.%2:6,) x=12,4,5.6 (272)

U;gh, = Zd:h)gﬂn(xl'xl;én) ﬂ = l' 2’ 3 (27b)
Syo®

oM = o ZYY 27c

; 5. (27¢)

where /., and gy, are the eigenfunctions which coincide with the right-hand side of eqn (24)
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and include the infinite set of §,. The infinite set of coefficients {d}"'} is to be determined in
conjunction with the particular solution.

3.2. The particular solution
A particular solution (denoted by superscript p) to eqn (10) is expressed in the form

FP = a xi+a-xix,+a,x, X3 +a,x3+asxi +a.x, v +d-x3

By = as-‘"f‘*‘ao-\'lx:+a|o-\'5+“1 1X;+a,2%;. (28)

Substitution of eqn (28) into eqn (9) yields

o'l = 2u x| +6a,x,+2u; (29a)
o' = 6a,x, +2a,x;+ 2a; (29b)
6 = —2ayx, —auX; —dy, (29¢)
GI(': = U\).\‘|+2(l|“.\-: +(I[3 (29d)
o't = =2u.x,—2a,x,—a, (29¢)
and
- 1)
Syal

o'l = (A x A x,+40) = 30)

,
S

The expression of the partgeular part of the displacements, #{”, follows exactly the form of
eygns (Sa ¢), in which

UP =G xi+Gx xa+G x4 HGw — G )xs + 16, (31a)
U =G ox X2+ 1Goaxi+ Gy + MG — G )X+ 4Gy v, (31b)
vy = gGSI-YIz+(G)l+"14)-‘.l-‘.2+("53-“| + EG“xi + Gy (3l¢)
and
G, = 25’,,1134-65',3[1, —2§,mx +S~',5a\,—-5',(,a:+$_‘A| (32a)
GI: = 65',.(144-‘_’5',3(13~—S;,4(19+2.§',5¢I|(,—25,6113-{-5,3‘43 (32b)

G,;=25“(17-{'-25']3(15—5']4(1”+.S~',5(l,3-5',¢,(1,,+513/1; j= l,2,4.5,6. (32C)

The cocflicients in eqn (28) are determined by satisfaction of the governing equations
(10), the traction-free boundary conditions, eqn (12), and the interfacial conditions (14),
(15). To this end, a system of 34 lincar algebraic equations is obtained for the 44 unknown
cocflicients in eqns (29)-(32). Equation (10) yields
—65:4H| +2(§:5 +§.“,)(l: —2(514+§5°)(I\+6S:|5U4+§44(13

—2545(1«)+2§55(1|0 = “2/’4'{"“'15)4 "‘.‘{3535 (33&)

amimrh =0 i=3,4,6,7,10,12 (33b)

and the following quantities are identical for the m and the m+ 1 plies:
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a;, _]--l 5 8. ll A,S;J'. l=l.2.3. A;: G“: G|3; Gbl—'Gll;
%Gg3+ﬂ)3: Gy Gg]l Up., = 1.2,3; w. k=12 (33c-m)

Using eqns (33b.c). we can rewrite (33a) in the form
(S¥+85a,+SHag+24,=0 k=mm+1. (34)

Similar elimination will provide

Gy = 65:a)+ S 5a,+ 51,4, (35a)
Gy =28:a5+S5:4, (35b)
Geoy = — 28,30y =250, (35¢)
G2 =25,a:+ 5.4, (35d)
Ges = —Souay, (35¢)
Ga = 655:a,+ Sssay (35F)
Gsy = 255,a;. (35g)

The use of ¢qn (35) in (33d-k) assuming no rigid body translations and rotations, results
in

@ [6(87Y = 83t ") +au[SEH] —an[ST3 )+ A (ST = ST USEY/SHE I =0 (36)
as2(STY =81 N+ (ST = ST SEISE = 0 37

NK[»)(S(m) (mrl))l+u [7(5""]+.5("') ((:',',H’—-g"'i”))]
+Ax[STP = ST ISYY/SYT N =0 (38)

an S50 -85 =0 (39)
al[6( (m) S(mfl))]+a [.S“")]—-(I.,[S("'"“] =0 (40)
as[2S5F =85 = 0. (41

At this stage, we are left with 11 unknowns: a,. a,, as, ay, ay, a5, ayy, Ay, Ay, A5, Ay where
ay and a; are for the mth and (m+ 1)th plies, respectively, and the rest of the coefficients
are identical for both layers. These unknowns appear in the eight equations, (34), (36)-
(41). In order to imposc the far-end conditions (13), the full expressions for the stresses
(i.c. the sum of the homogencous and particular parts) are needed. This adds the inifinite
number of unknowns ' {cqn (27)]. It should be noted that although in practical com-
putation this sct of unknowns, d, is truncated, the system of equations is still over
determined since some of the unknowns were eliminated by the additional equations. Next,
the double integrals in (13) are exactly evaluated. The results are in the Appendix. Equations
(A1)-(A6) together with (34), (36)-(41), form a system of 14 equations in the above 11
unknowns and the additional unknowns {d,}.

In order to incorporate the effect of the hole, the approach mentioned in (2.2.3) is
applied. It should be noted that the calculated stresses using Lekhnitskii’s theory for
anisotropic plate with elliptical cavity are 6{7., and ¢%¥3..,. Thus,
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o83 (x1.X2) = 6V (¥,. X2)

o (%1, x:) = afvalx,,x;) m=12.... No.ofplies. (42)
The traction-free boundary conditions at the upper and lower surfaces of the laminate are :

o (x1.x2) =0
U(zks'(-\’h-\”:) =0

o (x.x:) =0 k=12: x,=b. —c respectively. (43)
At the exterior free edge

G(lkl)(xl'x.’.) =0
a(x 1. x2) =0

U(lkz)(-‘fl»-\”z) =0 A=L2; x;=a. (44)

For the symmetric laminate, the following relations are required at the plane of symmetry

up (e, x;) =0
wy (x,x;) =0
llj‘z(xl,.\':) = (. (45)

The above conditions (42)-(45), are satisfied by minimization of the error of the
residuals in the sense of a weighting function technique. The stresses and the relevant
derivatives of the displacements [as required in eqn (45)] have the general form

R=Y Db~/ (46)

where D, are the coeflicients a,, A,, di', and ¢, are the trial functions to be identified with
the eigenfunctions of the exact solution. The function f is either zero or consists of the
solutions obtained from the hole effect, eqn (42). Orthogonalization of R with the trial
functions, such that the inner product vanishes, is performed in the form

(fp,.[)"jo,cp,—/])w j=12....n (47)

i=|

The inner products vields n equations where # is the number of all unknowns taken into
account. Thus

)":D,L(¢,¢,)ds=L(¢,f)ds j=1.2....n (48)

i

where D is the domain in which the problem is treated and therefore it is where integration
is performed. In our case, this domain is changed according to the line where the boundary
condition takes place and that is where integration is carried out. The explicit form of eqn
(48) is given by
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t xy= Xy

a—1
= J‘ (oS0 FY) +o o F 5}) + oL F S;) + 0 FY 53')) ds l 49)

;=0

in which j = 1,2.... (No. of unknowns) and ¢ is the laminate thickness. In eqn (49), F,.(m)
is defined by the homogeneous and particular parts of the solution, eqns (27} and (29)
respectively.

The index x = 1, 2, 3, 4, 5, 6 denotes the contracted Greek notation for the stresses.
The functions Ly, (m) (8 = |, 2, 3) are defined by the derivatives (45). The integrals in (49)
are performed numerically using Simpson's method. The number of points of integration
is of great importance when convergence of the solution is considered. Equations (34),
(36)-(41), (49) provide a set of linear algebraic equations

AD =8B (50)

in which 4 is the coefficients matrix with order (¢ x n), ¢ > n; ¢ is the number of unknowns
associated with the 14 equutions from the elasticity solution (34), (36)-(41), (49), (Al)-
(A6), and n is the total number of unknowns. In eqn (49) D is a vector (nx 1) of the
unknowns.

The over determined system may be sofved in the least square sense as

A'AD=A'B (&1}

in which 4’ is the conjugate transpose of 4. Equation (51) turns out to be solvable since
A'A is of the order (nx n) and AB' is (7 x 1), but due to the nature of the general solution
it appears that some rows and/or columns might be zero or show dependency which causes
A'A 10 be singular. Even if a mathematical singularity does not occur, due to the use of a
computer, the solution of such a system might be strongly ill-conditioned, depending upon
the propertics of the plies which enter the equations. This ill-conditioned behavior may be
treated by adopting the method of singular-value decomposition (Stewart, 1973). According
to this method, every matrix 4 (g xn), 4 > n, may be expressed as the multiplication of
three matrices as follows

A=ULV" (52)
where U and V are (¢ x¢) and (nxn) unitary matrices whose columns are the ortho-
normalized eigenvectors of 447 and A7 A, respectively. The matrix Z is diag (o, 0) which

is a (g x n) matrix with ¢ being the square roots of the non-zero eigenvalues of 47A4. Let
U’ be denoted by

U'=AV|....... e (53)

in which ;7' are the reciprocals of the non-zero components of T in a descending order
on the diagonal. Let us also define w by
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w=UT"B (54)

and
U'=}— i=1,2,...,n (55)

The desired solution is determined from
{D} = [V]{c}. (56)

Having obtained {D}, the displacements and stresses are computed from eqns (27), (29)
and (30).

4. CONVERGENCE OF THE SOLUTION AND EXAMPLES

Consider the case of a [+45], laminate which was considered by Wang and Choi
(1982a,b), Wang and Crossman (1977), Pipes and Pagano (1970) and Kassapoglou and
Lagace (1987). The properties of the unidirectional single ply as given by the above
mentioned authors, for the graphite—epoxy system are given in Table 1. As a case study, a
circular hole is centrally located, and the laminate is subjected to a unit stress in the x;
direction as shown in Fig. 3(a).

Results were obtained in three locations: in the vicinity of the hole and at the free edge
of the laminate as well as far from these two locations where classical lamination theory or
results of anisotropic plate analysis with a center hole are valid. Convergence of the obtained
stresses was studicd by examining the effect of the number of eigenvalues and the number
of integration points on the results, The study of the effect of the number of cigenvalues
was limited to the ability of the computer to provide accurate solutions when using the
Muller (1956) deflation method since this method involves calculations of differences
between numbers that converge to the point that multiplication by that difference results
in computer underflow. Convergence was studied on all stresses. Predicted results for the
normal stress o, are exhibited for three different numbers of eigenvalues and 200 integration
points as shown in Fig. 2. Observing curves 1-5 in Fig. 2, we conclude that convergence is
achieved using 25 eigenvalues with slight changes between the cases of 50, 100, and 200
integration points. Curves 4 and 5 show results in which low numbers of cigenvalues are
used and therefore result in wrong stress distribution. Curves 1-3 present close results in
which the same number of 25 eigenvalues are used and show convergence. The results of
curves 1-3 at x,/a = |, match the results presented by Wang and Choi (1982a,b) for the
similar case of a straight free edge. In order to investigate the effect of the hole on the stress
distribution at various locations along its circumference, we present in Fig. 3(b) all stress
distributions along a cut made perpendicular to the laminate straight free edge, and in Fig.
3(c), the variation of the normal stress g,, along the cross sections which are radial to the
hole at « = 0°, 10°, 30°, 60°, and 80°. This figure exhibits well the fiber oricntation depend-

Table 1. Material properties of single unidirectional
ply of the examined luminate

E(msi) ST(GN/m?)

E, 20.0 137.50
E, 2.1 14.44
E, 2.1 [4.44
Gy 0.85 5.84
G 0.85 5.84
G 0.85 5.84
vy 0.21

vy 0.21

Vay 0.21
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X/a
Fig. 2. Convergence of o, through various numbers of eigenvalues and points of integration.
Curve No. of Points of
No. cigenvalues integration
1 25 200
2 25 100
3 25 50
4 [ 100
5 7 100

ence which provide various orders of singularities. The values of the orders of singularity
are given by

d, = —0.025575658 fora =0"

3, = —0.026100409 fora = 10"
J, = —0.030274706 for a = 30°
d, = —0.030274706 for a = 60’
d, = —0.026100409 for a = 80"

where 0, for the cases of & = 107, 30, 60° and 80" is calculated for the direction tangential
to the hole edge which provides an interface between [35/ 55}, {15/ ~75], [— 15, 75] and
[—35/55]) orientations, respectively. The latter analysis is done using a coordinate system
transformed to match the direction tangential to the hole and to the radial cross section in
order to satisfy the basic assumptions introduced in Section 2.1 and the traction-free
boundary conditions at the hole edge as explained in Section 2.2.1. The validity of the
results for the transformed configuration are limited to the vicinity of the hole within the
region in which the stresses are controlled by the mathematical singularity.

5. CONCLUSIONS
The present investigation exhibits the following points of interest.

(i) o3 satisfics the traction-free boundary condition as also indicated by Kassapogolou
and Lagace (1987).

(ii) o, exhibits singular behavior and tends to — oo as previously shown by Wang and
Choi (1982a.b) for the cross section at x,; = 0. Note that at this cross section the distribution
at the hole is somewhat different from the one at the laminate free edge. That indicates
the influence of the hole constraints on the edge effect. However, when examining the
hole circumference, we find a region in which ¢;; is in tension and more likely to cause
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Fig. 3. (a) Geometry and description of cuts in (b) and (¢). (b) Stresses distribution at 2 = 0°; 2§
eigenvalues, 200 points of integration. (c) Comparison of normal stress o4, at various cuts.

delamination. For the (4 45), laminate, that region was found to be the arc which lics
between 10 and 50 degrees approximately.

(iii) The stress concentration around the hole matches Lekhnitskii's development even
though a slight relief is detected at the edge due to the boundary layer effect.

(iv) The present work provides a general framework for the analysis of the * singularity
for any type of laminate containing an elliptical cavity, and for the determination of singular
stress fields associated with edge effects in those configurations.

This method of analysis has been used successfully to predict certain aspects of delamination
in notched composite laminates. These results will be presented in a subsequent paper,
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